Dolev Yao Notes

Aryan Nath
Information Security (CS-3620)

March 2, 2025

In one of our previous lectures we discussed the protocol for establishing a handshake between
users A and B using a random nonce n generated by A. The protocol for this handshake is:

A — B :pair(" A", aenc(n, pkp))
B — A :aenc(n,pka)

This protocol is secure if no one except A and B gets access to the nonce n. The as-
sumptions we made are that encryption is bullet proof and communication is done over an
adversarial channel, that is, all messages sent over the network can be accessed by an adver-
sary.

Given these assumptions, an adversary I can get access to the nonce n using the following
attack on the handshake:

A — (I)B : pair(” A;y", aenc(n, pkp))
I — B : pair(" 14", aenc(n, pkg))
B — (I)A : aenc(n, pky)

The adversary I’ can now decrypt aenc(n,pk;) with its secret key sk; and get the nonce
n.

I — A :aenc(n,pka)

A receives the response as they expected and has no idea that n has been exposed.

here A — (I)B means that [has deceived A to send messages to I while thinking that
they are sending messages to B.

Since this is a simple protocol, it was easy for us to determine that the protocol is not
safe. For longer and more complex protocols, we need a formal verification system which we
can use to determine whether the adversary gets access to such a nonce n or a secret that
only Alice and Bob are supposed to know.

This motivates the requirement for the Dolev Yao model, which allows us to formally
define the ’knowledge base’ of the adversary and finally answer the question I - n?

The Dolev Yao Model and its preliminaries:

1. Knowledge Base: Term algebra is used to give the knowledge of the protocol actors as
follows:

(a) The grammar for a term = keys|messages|nonces|ids|Any operator applied to the subterms of

(b) Operator grammar is defined as operator = aenc|senc|sign|verify.

(c) Equations are defined as adec(aenc(m, k), k™) = m,verify(sign(t,id'),t,id) =
true if id = id’

2. How do the protocol actors infer knowledge?

Given the knowledge base X of an agents / intruder, X can be used to infer knowledge
using the following rules:

(a) Axiom:
W az(t € X) (Destruction Rule)
(b) Pair:
Xkt XkEt
XE poair G, t1; pair (Introduction Rule)
(c) Split:
X+ pair(t()a tl) .)
XFt split; (Destruction Rule)
(d) Asymmetric Encryption:
XHt XFE
m enc (Introduction Rule)

(e) Asymmetric Decryption:

XFenc(t, k) XFinv(k)
Xkt

dec (Destruction Rule)

(f) Generate public key using parameter k:

XFE

) pk (Introduction Rule)

So, in the Dolev Yao model we formally prove/disprove X F ¢7 by collecting infor-
mation in the knowledge base X by appending all terms (messages) accessible by the
adversary I over the network and performing inference using the above rules.

3. Capabilities of the 'standard’ adversary:

e The adversary can see any message.

e The adversary can block any message.

e The adversary can redirect any message.

e The adversary can masquerade as anyone.

e The adversary can initiate new communication.
e The adversary can mix-and-match messages.

e The adversary can genearte new messages.

e The adversary cannot break the underlying 'perfect’ cryptography.

Example

Test your understanding by solving these exercises.

a. What is the size of the term below? What are its subterms?
aenc(pair(aenc(m, pk(k1)), pair(ni, n2), pk(kz2)))
b. Given the following X, can X derive aenc(m, pk(k3)) using a normal proof?

X={
aenc(m, pk(k1)),
pair(ka, aenc(pair(m, k1), pk(ks))),
aenc(ks, pk(k2)),
}

Answer:

(a) Given t = aenc(pair(aenc(m, pk(kl)), pair(nl, n2)), pk(k2))).

The size of a term is equal to the number of its subterms, or equivalently the
number of nodes in the term tree of the term.

By just counting the number of subterms of ¢ we can determine the size of ¢ as
9 (assuming pk(k) is an atomic term). Let’s verify this using the term tree for
aenc(pair(aenc(m, pk(k1)), pair(nl,n2)), pk(k2))).

aenc(pair(aenc(m, pk(ky)), pair(ni, n2)), pk(ks))

T

pair(aenc(m, pk(ky)), pair(ny, ng)) pk(k2)
aenc(m, pk(ky)) pair(ng, ng)

/NN

m pk(kq) n

We can see that the number of nodes (subterms) is precisely 9.
All subterms of aenc(pair(aenc(m, pk(kl)), pair(nl, n2)), pk(k2))) have been shown
in the above term tree.

(b) First we recall that in a normal proof the major premise of the elimination
rules adec,split, axr has to be from an elimination rule. Let’s verify that X can
derive aenc(m,pk(k3)) by constructing a normal proof (also remember that if
X F aenc(m, pk(k3)) then we definitely have a normal proof).

The proof is as follows:

pair(ks, aenc(pair(m, k1), pk(ks))) € X

ax [E]

pair(ks, aenc(pair(m, k1), pk(ks))) € X X + pair(ka, aenc(pair(m, k1), pk(ks))) aenc(ks, pk(ka)) € X
: , ax [E] split [E] ax [E]
X + pair(ks, aenc(pair(m, k1), pk(ks))) X F ko X b aenc(ks, pk(k2))
split [E] adec [E]
X + aenc(pair(m, k1), pk(ks)) X + k3
adec [E]
X F pair(m, ky)
——— split [E]
XkFEm
X b ks
———————pk[]]
XFEm X + pk(ks)

aenc [I]
X + aenc(m, pk(ks))

(Assuming ks is the private key which can be used in the rule pk to derive pk(ks),
else we cannot get pk(ks) and X cannot derive aenc(m, pk(ks)))

4. Given X, t how difficult is it to verify X ¢
For a passive intruder, who can just listen to the network traffic and make inferences
based on just the information they have access to, this problem can be solved in
O(Jst(X U t)[?) (st is the subterm of X Ut, which we will talk about after this part).
The fastest way to solve this problem is linear in the size of st(X Ut).

However, the same problem for an active intruder who can modify intercepted message
and masquerade as other parties is much more difficult to solve. The active adversary
can (1) call unboundedly many sessions between other parties and can (2) inject un-
boudedly large terms into the protocol (since |st(X)| o< | X, this makes the inference
time for our Dolev Yao model also unbounded). (1) can be solved by bounding the
number of sessions and given boundedly many sessions, (2) can be solved as well. Still,
with boundedly many sessions, the problem for active intruders is NP-complete (poly-
nomially many terms are injected by the adversary; hence, polynomiallly number of
derivability checks are required and each check takes polynomial time).

5. The subterm st(t) of a term ¢ is the smallest set such that:
1)t € st(t)
2)pair(ty, ty) € st(t), then {¢1,t2} C st(t)
3)aenc(t', k) € st(t), then {', k} C st(t)
4) for a set X, st(X) = Ugexst(t). 5) st(X) < Usexst(t)
(overview of the proof: st(pair(t_1,t-2)) = { pair(t-1,t-2) U st(t_1) Ust(t-2) }
<1+|t1|+|t2] using induction hypothesis
st(aenc(t’,k)) = { aenc(t’.k) Ust(t’) Ust(k) } < 1+|¢'|+|k| by induction hypothesis)
We will visit subterms again once we reach the polynomial time derivation algorithm
I mentioned above.

6. Do we have a shortest proof for x - t7
Yes, we do. These are normal proofs. In fact, every normal proof of the form X + t is
the shortest proof for X -t (provable by contradiction).

Normal proof: Given a set X, a proof X F ¢ is normal if the major premise of every
elimination rule in the proof is the conclusion of an elimination rule (pk, pair, and split
increase the length of the proof).

Also, whenever there exists a proof for X F ¢, there exists a normal proof for X + ¢.
Hence, for every proof there exists a shortest, normal proof.

7. Subterm property:
Before I mention the polynomial time algorithm for derivability, we need to first visit
the subterm property in order derive the bound on the time complexity of the algo-
rithm.

Subterm Property: Let 7 be a normal derivation with conclusion X F ¢ and last rule
str. Let X s occur in 7. Then s € st(XUt). Furthermore, if str is an elimination
rule, then s € st(X).

Now, we describe the poly time derivability algorithm.

8. Polynomial time algorithm for derivability:

Given Xt we need to check whether X - ¢. Let N = st(X U t). Now, a derivation
of X -t can be done using just the subterms of X Ut, which are exactly st(XUt), as
anything outside their subterms would lead to a redundant conclusion that just adds
complexity to our proof and is hence redundant. Furthermore, part on normal proofs
we know that if X F t exists then there is a minimum size normal proof for X F¢. We
can directly see that in any minimum size proof if s € st(XUt), then X F s occurs
at most once on each branch of the derivation as we could otherwise obtain a shorter
derivation for s and hence ¢, contradicting the normality of the proof.

Since the largest the number of subterms we can have in the derivation of X F t is
|st(X)| + [st(t)|, a normal minimum sized proof of X t is bounded by N. Hence,
if we calculate each ' € st(XUt) derivable at each level of the proof, starting from
X and do not go beyond N levels. If ¢t has been derived by then then X F t7 is yes,
otherwise no (since every proof has a normal minimum sized proof).

Using the above the polynomial time algorithm for derivability is constructed as follows:

Algorithm 1 Polynomial time algorithm for computing derive(X)

1
2
3
4
5:
6
7
8
9

21+ 0;
:Y(—XQ;
: while 2 < N do

Z (-YU{(to,tl) € st | to, t1; € Y}U{{t/}k € st ‘ t,,k € Y},
Z+—ZU{t'|Ir:(t',r)eY or (r,t)eY};

Z <+ ZU{t'| Ik {t'}r € Y and inv(k) € Y};

Y «— Z;

: end while
: return Y;

Since any minium size proof by the subterms of X Ut is bounded N and we have derived

all possible terms from X over N levels, if X F ¢t is possible then it would have added to Y.

