
Arithmetic Coding
Expository Presentation

Aryan Nath

April 3, 2025 1 / 27



Problem Statement

- Consider the source alphabet {a1, a2, a3} with probabilities
P(a1) = 0.95, P(a2) = 0.02, and P(a3) = 0.03.

- Source entropy = 0.335 bits/symbol
- Avg code length per symbol using Huffman coding = 1.05 bits.
- By coding in blocks of two symbols we achieve 0.611 bits/symbol.
- For block length = 8, possible combinations = 38 = 6561!

April 3, 2025 2 / 27



Arithmetic Coding

- Generate codewords for the entire letter sequence instead of for each
block.

- Unique tag generation.
- Correct decoding.

April 3, 2025 3 / 27



Coding a Sequence

- Very large number of possible message sequences.
- Need very large number of values (infinite) to generate unique tags.
- One possible range: [0, 1).

April 3, 2025 4 / 27



Generating a Tag

- Can we assign a unique sub-interval that respects the order of our
sequence (and generate a tag from it)?

- Use the cumulative distribution function and partition the interval
[0, 1).

- From the message sequence, associate each symbol ak with the
sub-interval [FX (k − 1), FX (k)).

- Partition the sub-interval in the same way as the unit interval.

April 3, 2025 5 / 27



Example
Consider the source:
A = {a1, a2, a4} with P(a1) = 0.7, P(a2) = 0.1, andP(a3) = 0.2.
Cumulative distribution function: FX (1) = 0.7, FX (2) = 0.8, and FX (3) = 1.
Associated intervals: {a1 : [0.0, 0.7), a2 : [0.7, 0.8), a3 : [0.8, 1)}.
Partition the unit interval.

Figure: Partition the unit interval

April 3, 2025 6 / 27



Example: Finding Sub-intervals

Suppose the first symbol in the sequence is a1.

Figure: First sub-interval

April 3, 2025 7 / 27



Example: Finding Sub-intervals

Suppose the first symbol in the sequence is a1.
We then divide this sub-interval in the same proportion as the original
interval.

Figure: Partition the first sub-interval

April 3, 2025 8 / 27



Example: Finding Sub-intervals

Suppose the second symbol is a2.

Figure: Partition the second sub-interval

April 3, 2025 9 / 27



Example: Finding Sub-intervals

The last symbol in the message is a3.

Figure: Partition the second sub-interval

A unique sub-interval is selected at each step, and it respects the order of the sequence.
Select a tag from the final interval. The binary representation of the tag gives a unique encoding for the
sequence.

April 3, 2025 10 / 27



Example: Updating the Interval Bounds

After the nth symbol in the sequence has been generated, the upper and
lower limits of the updated sub-interval [l (n), u(n)]) will be:

l (n) = l (n−1) + (u(n−1) − l (n−1))FX (xn − 1)

u(n) = l (n−1) + (u(n−1) − l (n−1))FX (xn)

April 3, 2025 11 / 27



Precision Problem

- As the sequence length increases, the subinterval becomes smaller
and smaller.
⊥ → a1 → a2 → a3.
[0, 1] → [0.00, 0.70) → [0.490, 0.560) → [0.5460, 0.5600).

- Fixed bit representation (64 bits) for floating points, having more bits
for the tag will lead to information loss, and hence incorrect decoding.

- To avoid this, we need to rescale the intervals while preserving the
uniqueness of the tag.

April 3, 2025 12 / 27



Solution Overview

While computing the sub-intervals, we will have 3 cases:

1. The interval is entirely contained in the lower half of the unit interval
[0, 0.5) (E1 rescaling).

2. The interval is entirely contained in the upper half of the unit interval
[0.5, 1.0) (E2 rescaling).

3. The interval straddles the midpoints of the unit interval (E3
rescaling).

April 3, 2025 13 / 27



Solution Overview: Incremental Encoding

- The most significant bit of tag in the interval [0, 0.5) has to be 0.
- The most significant bit of tag in the interval [0.5, 1) has to be 1.
- Either of these intervals uniquely determines the most significant bit of the tag. We send this bit to

the decoder without waiting for subsequent sequence members.
- Now, we take the same proportion as the unit interval inside the sub-interval, and then we also rescale

the sub-interval.
- We can safely remove the other half of the unit interval, through the following scaling:

E1 : [0, 0.5) → [0, 1); E1(x) = 2x

E2 : [0.5, 1) → [0, 1); E2(x) = 2(x − 0.5)

- Since we are sending the most significant bit of the tag whenever the most significant bit of the upper
and lower limit of its sub-interval are equal, we are generating the binary representation of the tag itself.

- The scaling operations are just left shifts on the tag.
- This is the same tag as our original encoding, which we have already argued to be unique.

April 3, 2025 14 / 27



Solution Overview: Decoding

- Initialize u(0) to 1 and ;(0) to 0.
- Given the tag value, find the symbol ak such that the tag is within

the interval [l (1), u(1)), where:

l (1) = 0 + (1 − 0)FX (xn − 1)

u(1) = 0 + (1 − 0)FX (xn)

- This is element ak will be the first element in the decoding.
- Repeat this with [l (2), u(2)) and onwards.
- Every time we our interval [l (i), u(i)) satisfies the condition for E1

scaling or E2 scaling, we perform the scaling and remove the MSB of
the tag.

April 3, 2025 15 / 27



Example

April 3, 2025 16 / 27



Example

April 3, 2025 17 / 27



Example

April 3, 2025 18 / 27



Example

April 3, 2025 19 / 27



Example

April 3, 2025 20 / 27



Example

April 3, 2025 21 / 27



Example

April 3, 2025 22 / 27



Example

April 3, 2025 23 / 27



Example

April 3, 2025 24 / 27



Example

April 3, 2025 25 / 27



Example

April 3, 2025 26 / 27



Thank you

Thank you

April 3, 2025 27 / 27


